Proofs - 3

Vignesh Nydhruva

January 2, 2024

Question

The following question is obtained from the textbook: Discrete Mathematics and its Applications 8th ed. by Kenneth H. Rosen.

Prove that

$$
\sum_{j=0}^{n}\left(-\frac{1}{2}\right)^{j}=\frac{2^{n+1}+(-1)^{n}}{3 \cdot 2^{n}} \quad \forall\{n \in \mathbb{Z} \mid n \geq 0\}
$$

Step 1: Basis

We will attempt a proof by mathematical induction. First, we must prove the base case for $n=0$, since that establishes the validity of the proof from the most simple case. $P(n)$ represents the propositional function for the proposed equation for all cases. $P(n)$ must either be true or false. If we show that $P(n)$ outputs true for all n, then we have proved the statement to be true for all $n, P(0)$ is represented by the following equation:

$$
\sum_{j=0}^{0}\left(-\frac{1}{2}\right)^{j}=\frac{2^{0+1}+(-1)^{0}}{3 \cdot 2^{0}}
$$

The left-hand side simplifies to $\left(-\frac{1}{2}\right)^{0}$. Now, we must show that the righthand side of the equation is also equal to $\left(-\frac{1}{2}\right)^{0}$.

$$
\frac{2^{0+1}+(-1)^{0}}{3 \cdot 2^{0}}=\frac{2+1}{3 \cdot 2^{0}}
$$

$$
\begin{aligned}
& =\frac{3}{3 \cdot 1} \\
& =1 \\
& =\left(-\frac{1}{2}\right)^{0}
\end{aligned}
$$

Now, we have proved the base case to be true.

Step 2: Inductive Step

We must now prove the general case. First, assume $P(k)$ to be true for any arbitrary k.

$$
P(k): \sum_{j=0}^{k}\left(-\frac{1}{2}\right)^{j}=\frac{2^{k+1}+(-1)^{k}}{3 \cdot 2^{k}}
$$

Now, we need to prove that $P(k+1)$ is true. Doing this will prove the statement for all n. This is because, k is an arbitrary value that shares the domain of n. So, if we have proved the statement for any arbitrary value, we can connect that arbitrary value to any definite value of n and the statement will hold. Therefore, we will have proved the equation. Now, perform the following simplifications.

$$
\begin{aligned}
P(k+1): \sum_{j=0}^{k+1}\left(-\frac{1}{2}\right)^{j} & =\frac{2^{k+2}+(-1)^{k+1}}{3 \cdot 2^{k+1}} \\
& =\sum_{j=0}^{k}\left(-\frac{1}{2}\right)^{j}+\left(-\frac{1}{2}\right)^{k+1} \\
& =\frac{2^{k+1}+(-1)^{k}}{3 \cdot 2^{k}}+\left(-\frac{1}{2}\right)^{k+1} \\
& =\frac{2^{k+1}+(-1)^{k}}{3 \cdot 2^{k}}+\left(-\frac{1}{2}\right)^{k+1} \cdot \frac{3 \cdot 2^{k}}{3 \cdot 2^{k}} \\
& =\frac{2^{k+1}+(-1)^{k}+3 \cdot 2^{k} \cdot\left(-\frac{1}{2}\right)^{k+1}}{3 \cdot 2^{k}} \\
& =\frac{2^{k+1}+(-1)^{k}+3 \cdot 2^{k} \cdot(-1)^{k+1} \cdot\left(\frac{1}{2}\right)^{k+1}}{3 \cdot 2^{k}} \\
& =\frac{2^{k+1}+(-1)^{k}+\frac{3}{2} \cdot(-1)^{k+1}}{3 \cdot 2^{k}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{2}{2} \cdot 2^{k+1}+\frac{2}{2} \cdot(-1)^{k}+\frac{3}{2} \cdot(-1)^{k+1}}{3 \cdot 2^{k}} \\
& =\frac{1}{3 \cdot 2^{k}} \cdot \frac{2^{k+2}+2 \cdot(-1)^{k}+3 \cdot(-1)^{k+1}}{2} \\
& =\frac{2^{k+2}+2 \cdot(-1)^{k}+3 \cdot(-1)^{k+1}}{3 \cdot 2^{k+1}} \\
& =\frac{2^{k+2}+\frac{(-1)}{(-1)} \cdot 2 \cdot(-1)^{k}+3 \cdot(-1)^{k+1}}{3 \cdot 2^{k+1}} \\
& =\frac{2^{k+2}-2 \cdot(-1)^{k+1}+3 \cdot(-1)^{k+1}}{3 \cdot 2^{k+1}} \\
& =\frac{2^{k+2}+(-1)^{k+1}}{3 \cdot 2^{k+1}}
\end{aligned}
$$

Notice that we have now shown that the proposition $P(k+1)$ holds with the assumption that $P(k)$ is true. Therefore, we have proven that

$$
\sum_{j=0}^{n}\left(-\frac{1}{2}\right)^{j}=\frac{2^{n+1}+(-1)^{n}}{3 \cdot 2^{n}} \quad \forall\{n \in \mathbb{Z} \mid n \geq 0\}
$$

