Proofs - 2

Vignesh Nydhruva

December 23, 2023

Question

The following question is obtained from the textbook: Discrete Mathematics and its Applications 8th ed. by Kenneth H. Rosen.

Prove that if n is a perfect square, then $n+2$ is not a perfect square.

Solution

We will attempt a proof by contradiction. First, assume that both n and $n+2$ are perfect squares. Then, let $n=a^{2}, n+2=b^{2}$ where $a, b \in \mathbb{Z}^{+}$. From the second equation, subtract 2 from both sides, leaving us with $n=b^{2}-2$. Now, we have two equations where n is isolated, so we can set them equal to each other.

$$
a^{2}=b^{2}-2
$$

Now, add 2 to both sides of the equation.

$$
b^{2}=2+a^{2}
$$

Now, take the square root of both sides.

$$
b= \pm \sqrt{2+a^{2}}
$$

We can reject the negative solution for b, since we restrict to b to the set of all positive integers. This leaves us with the following.

$$
b=\sqrt{2+a^{2}}
$$

Now, inside the radical, factor out a 2 from both terms.

$$
b=\sqrt{2 \cdot\left(1+\frac{a^{2}}{2}\right)}
$$

Now, using exponent rules, we can split the radical into 2 factors.

$$
b=\sqrt{2} \cdot \sqrt{1+\frac{a^{2}}{2}}
$$

$\sqrt{2}$ is an irrational number. An irrational number multiplied by an irrational or rational number will output an irrational number. This means that it does not matter what kind of number $\sqrt{1+\frac{a^{2}}{2}}$ is. Therefore, b is irrational. However, this is a contradiction, since we previously specified that $b \in \mathbb{Z}^{+}$. Thus, our original assumption that $n+2$ is a perfect square was incorrect. Therefore, by proof of contradiction, if n is a perfect square, then $n+2$ is not a perfect square.

