Proofs - 1

Vignesh Nydhruva

November 2, 2023

Prove the following equation using $\int_{-3}^{3} \sqrt{9-x^{2}} d x$.

$$
\pi=4 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{(-1)^{n}}{2 n+1}
$$

Part 1: Compute $\int_{-3}^{3} \sqrt{9-x^{2}} d x$
We can solve this integral by recognizing that it represents the area of a sector of a circle. Let $y=\sqrt{9-x^{2}}$. Now, make the following deductions.

$$
\begin{gather*}
y^{2}=9-x^{2} \tag{1}\\
x^{2}+y^{2}=3^{2}
\end{gather*}
$$

We now have the equation of a circle, centered at $(0,0)$ and with radius 3 . However, we need to know which part of the circle's area to compute. Looking at equation (1), we get the solutions for $y, y= \pm \sqrt{9-x^{2}}$. Based on the integrand, we can conclude that we need to choose the solution $y=\sqrt{9-x^{2}}$. This positive solution corresponds to the top half of the circle. The area of the circle is 9π, using the formula $A=\pi r^{2}$. However, we need to divide this by 2 , since we want only the top half. Therefore, $\int_{-3}^{3} \sqrt{9-x^{2}} d x=\frac{9 \pi}{2}$.

Part 2: Binomial Series Implementation

The integrand of $\int_{-3}^{3} \sqrt{9-x^{2}} d x$ could be written as a binomial series. Begin with the definition of a binomial series.

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}, \quad \forall k \in \mathbb{R}
$$

Now, we can make the following deductions.

$$
\begin{align*}
\sqrt{9-x^{2}} & =\left(9-x^{2}\right)^{\frac{1}{2}} \\
& =\left(9\left(1-\frac{x^{2}}{9}\right)\right)^{\frac{1}{2}} \\
& =3\left(1+\left(-\frac{x^{2}}{9}\right)\right)^{\frac{1}{2}}, k=\frac{1}{2} \\
& =3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}\left(-\frac{x^{2}}{9}\right)^{n} \\
\sqrt{9-x^{2}} & =3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{x^{2 n}}{9^{n}} \tag{2}
\end{align*}
$$

Part 3: Completing the Proof

Now, integrate both sides of equation (2). Integrating the infinite series is simple, since we are essentially integrating a polynomial where we can integrate each of the terms using the power rule.

$$
\begin{aligned}
\int \sqrt{9-x^{2}} d x & =\int\left[3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{x^{2 n}}{9^{n}}\right] d x \\
& =3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{x^{2 n+1}}{9^{n}(2 n+1)}
\end{aligned}
$$

Now, solve for the definite integral.

$$
\begin{aligned}
\int_{-3}^{3} \sqrt{9-x^{2}} d x & =\left.\left[3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{x^{2 n+1}}{9^{n}(2 n+1)}\right]\right|_{-3} ^{3} \\
& =3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{(3)^{2 n+1}}{9^{n}(2 n+1)}-3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{(-3)^{2 n+1}}{9^{n}(2 n+1)} \\
& =3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{3^{2 n} \cdot 3}{9^{n}(2 n+1)}-3 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{(-3)^{2 n} \cdot(-3)}{9^{n}(2 n+1)} \\
& =9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1}+9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{(-3)^{2 n}}{9^{n}(2 n+1)}
\end{aligned}
$$

If we examine the $(-3)^{2 n}$ component in the second series, notice that the following statement is true.

$$
(-3)^{2 n}=3^{2 n} \forall\{n \in \mathbb{Z} \mid n \geq 0\}
$$

Therefore, we can replace $(-3)^{2 n}$ with $3^{2 n}$ in the second series.

$$
\begin{aligned}
\int_{-3}^{3} \sqrt{9-x^{2}} d x & =9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1}+9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{3^{2 n}}{9^{n}(2 n+1)} \\
& =9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1}+9 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1} \\
& =18 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1}
\end{aligned}
$$

Recall that the value of the definite integral was $\frac{9 \pi}{2}$.

$$
\begin{aligned}
& \frac{9 \pi}{2}=18 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1} \\
& \pi=4 \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} \frac{1}{2 n+1} \square .
\end{aligned}
$$

