Integrals - 4

Vignesh Nydhruva

October 2, 2023

$$
\int \operatorname{sech}(x) d x
$$

Step 1: Algebraic Manipulation

We can rewrite the integrand by using the following definition.

$$
\operatorname{sech}(x)=\frac{1}{\cosh (x)}=\frac{1}{\left(\frac{e^{x}+e^{-x}}{2}\right)}=\frac{2}{e^{x}+e^{-x}}
$$

Now, continue manipulating the integrand.

$$
\begin{aligned}
\int \operatorname{sech}(x) d x & =\int \frac{2}{e^{x}+e^{-x}} d x \\
& =\int \frac{2}{e^{x}+\frac{1}{e^{x}}} d x \\
& =\int \frac{2}{\left(\frac{e^{2 x}+1}{e^{x}}\right)} d x \\
& =2 \int \frac{e^{x}}{e^{2 x}+1} d x
\end{aligned}
$$

Step 2: u-Substitution

We can now continue solving the integral by performing the following u substitution.

$$
\begin{aligned}
& u=e^{2 x}+1 \\
& \frac{d u}{d x}=2 e^{2 x} \\
& d x=\frac{d u}{2 e^{2 x}} \\
& 2 \int \frac{e^{x}}{u} \frac{d u}{2 e^{2 x}} \\
& \int \frac{1}{4 e^{x}} d u
\end{aligned}
$$

Since $e^{2 x}+1=u$, then $e^{x}=\sqrt{u-1}$. We can now substitute $\sqrt{u-1}$ into the integrand and proceed with the solution.

$$
\int \frac{1}{u \sqrt{u-1}} d u
$$

Step 3: Trigonometric Substitution

Now, perform the following trigonometric substitution.

$$
\begin{gathered}
u=\sec ^{2}(\theta), \quad d u=2 \sec ^{2}(\theta) \tan (\theta) d \theta \\
\int \frac{1}{u \sqrt{u-1}} d u=\int \frac{2 \sec ^{2}(\theta) \tan (\theta)}{\sec ^{2}(\theta) \sqrt{\sec ^{2}(\theta)-1}} d \theta
\end{gathered}
$$

Recall the trigonometric identity: $\sec ^{2}(\theta)-1=\tan ^{2}(\theta)$.

$$
\int \frac{2 \sec ^{2}(\theta) \tan (\theta)}{\sec ^{2}(\theta) \sqrt{\tan ^{2}(\theta)}} d \theta
$$

Since we are dealing with the square root of a square in the denominator of the integrand, we should rewrite $\sqrt{\tan ^{2}(\theta)}$ as $|\tan (\theta)|$. We can now set a specific domain for θ, namely $\theta \in\left(0, \frac{\pi}{2}\right)$, which will allow $|\tan (\theta)|$ to become simply $\tan (\theta)$. Note that we could have also chosen the outcome to be $-\tan (\theta)$,
making $\theta \in\left(-\frac{\pi}{2}, 0\right)$, but we choose the positive version since it is easier to deal with positive values. Now, we can continue solving the integral.

$$
\int \frac{2 \sec ^{2}(\theta) \tan (\theta)}{\sec ^{2}(\theta) \tan (\theta)} d \theta
$$

Now, almost everything cancels nicely, leaving us with the following.

$$
\int 2 d \theta=2 \theta+C
$$

We now need to rewrite this result, using the definition we made during the trigonometric substitution.

Notice that it seems that we skipped a step and went directly from $u=\sec ^{2}(\theta)$ to $\sqrt{u}=\sec (\theta)$. However, we know that $u=e^{2 x}+1$ and that $u \in(1, \infty)$, which is why we can take the square root of u without considering the negative case resulting from the absolute value.

Finally, substituting in $e^{2 x}+1$ in for the u, we get the answer.

$$
\int \operatorname{sech}(x) d x=2 \operatorname{arcsec}\left(\sqrt{e^{2 x}+1}\right)+C
$$

