
Composite Factorizations

Vignesh Nydhruva

March 2024

Contents

1 Abstract 1

2 Algorithm 1
2.1 Overview . 1
2.2 A Computer Program Implementation 3

3 Distinct Factorizations 4
3.1 Conjecture . 4

1 Abstract

This paper introduces an algorithm that can be used to find the distinct
factorizations of a composite number and introduces a conjecture on the
distribution of distinct factorizations among the composites.

2 Algorithm

2.1 Overview

The purpose of the algorithm is to find the number of distinct factorizations
of a composite integer n.

Definition 1. A factorization of an integer n is a set of positive integers that
multiply to n. (Note: this set consists of prime and/or composite numbers)

1

Definition 2. A prime factorization of n is a set of prime numbers that
multiply to n.

The first step of the algorithm is to begin with the prime factorization of
n. This is denoted by the function κ(n), which is defined as such

κ : C → {N}

where N denotes the set of nonnegative integers, P denotes the set of primes,
and C = (N − P) \ {0, 1} denotes the set of composite numbers.

Definition 3. Fk denotes the set containing factorization(s) of the kth−level
and let fk denote a set containing factors of a certain factorization of the
kth−level, where fk ⊊ Fk (generally) and fk ̸= ∅.

Definition 4. A kth−level factorization of n denotes a factorization of the
kth−level such that k represents the number of levels progressed from F0.

Based on Definition 3, let F0 denote the set outputted by κ(n) and let f0
denote the subset of F0 containing the prime factorization of n.

The next step of the algorithm is to find distinct combinations of fac-
tors within f0 and subsequently create new factorizations of n. To proceed
in a methodical manner, the cardinalities of each factorization in the next
level will be |f0| − 1. This is because exactly two factors are multiplied at
a given iteration, thus leading to a factorization of the next level containing
|f0| − 1 factors. To illustrate more clearly, let the 0th−level factorization
be κ(n) = F0 = {f0} = {{p1, p2, p3, p4}}, where p is a prime and |f0| = 4.
Let the 1st−level factorizations be the following set: F1 = {{p1p2, p3, p4},
{p1p3, p2, p4}, {p1p4, p2, p3}, {p1, p2p3, p4}, {p1, p2p4, p3}, {p1, p2, p3p4}}. No-
tice that any f1 is equal to |f0| − 1. For this case (where |f0| = 4), the
cardinality of the set that contains all f1 will be |F1| =

(
4
2

)
= 4!

2!(4−2)!
= 6.

In the general case, let Fk denote the set that contains all fk, where |Fk| =
|Fk−1|!

2!(|Fk−1|−2)!
(as long as any |fk| > 1). In order to give numeric example of

this step of the algorithm, take the following case. Let n = 210, where
F0 = {f0} = {{2, 3, 5, 7}}. f0 represents the 0th−level factorization of 210,
it is 0 levels past κ(210) (it is itself). The 1st−level factorizations of 210
would be the following set F1 = {{2 · 3, 5, 7}, {2 · 5, 3, 7}, {2 · 7, 3, 5}, {2, 3 ·
5, 7}, {2, 3 · 7, 5}, {2, 3, 5 · 7}}. Then, for each 1st−level factorization, the re-
cursive chain continues, therefore creating factorizations of the 2nd, 3rd, and
of the kth−level. The algorithm must terminate when |fk| = 1, implying that
fk = {n}.

2

2.2 A Computer Program Implementation

In this example, let n = 100. For reference, n has the following factorization
tree, with the root being the prime factorization of n. Duplicates in F1 and
any other subtrees have been removed, but not duplicates within a common
level.

2 · 2 · 5 · 5

(4 · 5 · 5)

(5 · 20)

(100)

(4 · 25)

(100)

(2 · 5 · 10)

(5 · 20)

(100)

(2 · 50)

(100)

(10 · 10)

(100)

(2 · 2 · 25)

(2 · 50)

(100)

(4 · 25)

(100)

The first step is to obtain the prime factorization of n and store it inside
list or other convenient data type, in accordance with the definition of F0

made in Section 2.1.
The next step is to create F1, which will be the input of the central

recursive method of the algorithm.

Definition 5. Let Ck denote the set that contains one or more sets, where
each set in Ck represents a combination of two factors in a particular set fk
of level k. Let ck ⊊ Ck (generally) where ck ̸= ∅.

Definition 6. Let Pk denote the set that contains the products of combina-
tions of factors of a factorization in the kth−level.

Definition 7. Let SF ⊊ κ(n = 100), where SF ̸= ∅. Regarding the example,
SF is permanently defined as {2, 2, 5, 5} and not {{2, 2, 5, 5}}.

First, find the combinations of the factors present in the prime factor-
ization (treating each factor as a unique element), thus creating the set
C0 = {{2, 2}, {2, 5}, {2, 5}, {2, 5}, {2, 5}, {5, 5}}. Remove duplicate sub-
sets of C0 if necessary. Now, C0 = {{2, 2}, {2, 5}, {5, 5}}. Next, cre-
ate a set P0 that contains the products of the elements inside each set
present in C0, where P0 = {4, 10, 25}. Then, create the set F1 that con-
tains |P0| sets where each set contains all the elements of SF where a dis-
tinct element of P0 is appended to each of the sets. After performing this

3

operation, F1 = {{2, 2, 5, 5, 4}, {2, 2, 5, 5, 10}, {2, 2, 5, 5, 25}}. Notice that
|C0| = |P0| = |F1|. Next, traverse F1 and let c0i denote the ith−combination
present in C0, where the indices of F1 and C0 are in synchronization. Note
that c0i ⊊ SF . Now for each set in F1, add the elements of (SF − c0i) and
remove the first |SF | consecutive elements that correspond to the prime fac-
torization of n. Now, sort each set in F1 in non-decreasing order (for clarity),
thus making F1 = {{4, 5, 5}, {2, 5, 10}, {2, 2, 25}}.

Variations of the logic presented in the previous paragraph can then be
applied to find the rest of the nodes in the tree. In order to find distinct
factorizations, sort the elements of each factorization and remove any dupli-
cates. An implementation of this algorithm can be found here: (link).

3 Distinct Factorizations

3.1 Conjecture

Definition 8. A distinct factorization d (represented by a set) of n (where
n ∈ C) is a unique factorization of n consisting of |d| factors, such that
2 ≤ |d| ≤ |P| where P ⊊ κ(n) and P ̸= ∅. P represents the set containing
the numbers present in the prime factorization of n (P is a generalization
of SF , which was defined in the previous section). Let D denote the set of
all distinct factorizations of n, where di ⊊ D, d ̸= ∅, and i is an indexing
variable for d.

It can be deduced that, as n increases, |P| increases. This is due to the
fact that a large increase in n corresponds with a better chance of writing
n as the product of more prime factors. More concretely, a doubling of n
corresponds to an increase of |P| by a unit of one factor, namely, the factor
2. This implies that a small increase in |P| (on the order of 100) results in a
relatively large increase in n (when n is on the order of 101 or higher). This
difference in magnitudes between an increment in |P| and an increase in n
is more obvious when larger primes are added to P.

Definition 9. Let DF̂k denote the set of distinct factorizations in the non-
trivial kth−level of the factorization tree of n, where the tree has a total of
|P| − 1 levels. This is built on the definitions made in Section 2.1.

The implication is that as n increases, the number of distinct factoriza-
tions of n also increases. As pointed out, a large increase in n corresponds

4

https://github.com/CaptMD-11/Factorizations/blob/master/src/Factorizations.java

to an increase in |P| (by a smaller degree). An increase in |P| implies an
increase in |D|, due to the following equation

|D| =

∣∣∣∣∣∣
|P|−1⋃
i=0

DF̂i

∣∣∣∣∣∣
Incrementing |P| by one would result in an additional level in the fac-

torization tree of n. This would result in |D| increasing exponentially due
to the following reason. For simplicity, assume in this case that every node
in the tree is distinct, thus resulting in no duplicate nodes. The number
of items added to D increases exponentially from level to level, since each
particular level produces several distinct factorizations, which compound as
k increases. Therefore, we have the following equation, where δ is an integer
corresponding to the change in |D|, P is updated to contain an additional
prime factor, and Fk−1 reflects the new factorization tree generated from the
incrementing of |P|.

|D|new = |D|+ δ =

|P|−1∑
k=2

|Fk−1|!
2! (|Fk−1| − 2)!

To also consider the case where there exist duplicate nodes in the factor-
ization tree after an additional prime is added toP, it is obvious that initially,
an exponential amount would be added to |D|. However, this means that
the duplicate factorizations have not yet been added to D, so therefore, the
removal of duplicate factorizations, subsequently, would have no effect on
|D|.

It must be noted that as P gains a prime factor, the order on which n
increases is greater than the order on which |D| increases. This is because
n grows with respect to any additional prime factors in P, while |D| grows
with respect to purely a change in |P|. Furthermore, virtually all primes
are on a higher order than an increment of 1 to |P|. So, the inclusion of a
relatively large prime p to P increases n exponentially by base p, while the
order of p has no effect on |D| (since |D| increases by 1 due to the inclusion
of a single prime in P, regardless of its order). In general, the inclusion
of a single prime to P increases n by a higher exponential amount than it
increases |D| by.

The following graph displays for each composite integer from 0 to 7500
(on the horizontal axis), the number of distinct factorizations (on the vertical

5

axis). The graph was generated using the application, Grapher, native to
macOS.

Based on these conclusions, I present the following conjecture.

Distinct Factorizations Conjecture. There exists a curve g(x), with

some subset gs : R+
0 → R+

0 , where ∀x ∈ R+
0

(
dgs
dx

> 0 ∧ d2gs
dx2 < 0

)
such that

all points of the form (n, |Dn|) ∈ N+ × N+ are contained by the curves gs
and y = 0.

6

	Abstract
	Algorithm
	Overview
	A Computer Program Implementation

	Distinct Factorizations
	Conjecture

